Multivariate Poisson–Binomial approximation using Stein’s method
نویسنده
چکیده
The paper is concerned with the accuracy in total variation of the approximation of the distribution of a sum of independent Bernoulli distributed random d–vectors by the product distribution with Poisson marginals which has the same mean. The best results, obtained using generating function methods, are those of Roos (1998, 1999). Stein’s method has so far yielded somewhat weaker bounds. We demonstrate why a direct approach using Stein’s method cannot emulate Roos’s results, but give some less direct arguments to show that it is possible, using Stein’s method, to get very close.
منابع مشابه
On Stein’s method and perturbations
Stein’s (1972) method is a very general tool for assessing the quality of approximation of the distribution of a random element by another, often simpler, distribution. In applications of Stein’s method, one needs to establish a Stein identity for the approximating distribution, solve the Stein equation and estimate the behaviour of the solutions in terms of the metrics under study. For some St...
متن کاملApproximating dependent rare events
In this paper we give a historical account of the development of Poisson approximation using Stein’s method and present some of the main results. We give two recent applications, one on maximal arithmetic progressions and the other on bootstrap percolation. We also discuss generalisations to compound Poisson approximation, Poisson process approximation and multivariate Poisson approximation, an...
متن کاملA Nonuniform Bound for the Approximation of Poisson Binomial by Poisson Distribution
It is well known that Poisson binomial distribution can be approximated by Poisson distribution. In this paper, we give a nonuniform bound of this approximation by using Stein-Chen method.
متن کاملCompound Poisson approximation with association or negative association via Stein’s method
In this note we show how the properties of association and negative association can be combined with Stein’s method for compound Poisson approximation. Applications include k–runs in iid Bernoulli trials, an urn model with urns of limited capacity and extremes of random variables.
متن کاملA continuous approximation fitting to the discrete distributions using ODE
The probability density functions fitting to the discrete probability functions has always been needed, and very important. This paper is fitting the continuous curves which are probability density functions to the binomial probability functions, negative binomial geometrics, poisson and hypergeometric. The main key in these fittings is the use of the derivative concept and common differential ...
متن کامل